Chapter 8
Collections

Most Important Information

Collections are used to hold and execute other morphs. They are the primary building block of a
hierarchy. Collections can execute their morphs either sequentially, in parallel, or in a customized
order using a behavior. You can put things in a collection using } STUFF: or NEW: and ADD: . You
can also set a repeat count using PUT.REPEAT: . You can specify custom functions to execute when
a collection is started, repeated, or stopped. Collections can be executed using START: if the HMSL
scheduler is running. For example, to execute a collection called COLL-S-2, enter:

HMSL.START
START: COLL-S-2

HMSL Reference Manual 8-1

TopColl
(Collection)

"OtherColl"
(Collection)

Doubler
(Player)

FalLalLa
(Shape)

Blaster
(Player)

OB.PLAYER Doubler Motif2
OB.PLAYER BLaster (Shape)
OB.JOB Flipper

OB.COLLECTION TopColl

OB.COLLECTION OtherColl

STUFF{ Doubler OtherColl }STUFF: TopColl
STUFF{ Motifl Falala }STUFF: Doubler
STUFF{ Blaster Flipper }STUFF: OtherColl
STUFF{ Motif2 }STUFF: Blaster

STUFF{ 'C FlipMotif }STUFF: Flipper

FlipMotif
(Forth Word)

Example HMSL Hierarchy
Figure 8.1

COLLECTIONS: Brief Introduction

Collections contain other morphs, usually players, jobs, and other collections. The fact that collections
can contain other collections allows for complex tree structures, or hierarchies. Morphs contained
within a collection are often referred to as its children. The shapes in players and the functions in jobs
are typically the lowest level nodes, or leaves, of the hierarchy tree. Figure 8.1 shows a typical HMSL
hierarchy along with some of the code used to construct such a hierarchy.

Collection Execution

When a collection is executed, it typically executes its children sequentially or in parallel. Morphs use
a message passing scheme to coordinate this execution. When a collection executes sequentially it
sends a starting time and its own address to its first child. When that child finishes, it sends a DONE
return message to its parent consisting of the time it finished and its address. The parent collection
then executes the next in line, and so on. When a parallel collection executes, it sends messages to all
of its children at the same time. It then counts DONE return messages. When the last message is
received, it either repeats the process or passes a DONE message to its parent. By setting a flag, these
messages can be echoed to the screen to assist in debugging complex pieces.

8-2 Collections

(6) COLL-2

(1) coLL-1
= T = 560

T=20

(5) Player-2
T = 560

) Player-1 (4) COLL-2
T = 340 T = 340

Player-1 Player-2

Message Passing between HMSL Morphs

Figure 8.2

The number of repetitions is controlled by setting a repeat count. Collections, players, jobs, and
Structures all have a repeat count that can be set by the composer. These morphs also have START,
REPEAT, and STOP functions. Whenever one of these morphs is started, for example, it executes its
START function. This allows user written functions to be easily embedded in the hierarchy. These
functions could be used to randomize shape data, trigger other morphs, reconfigure a hierarchy, place
new functions in the MIDI Parser, etc.

Collection Customization

Collections can be further customized. Instead of being strictly sequential or parallel, a custom
behavior can be specified that determines the order in which the children are played. A behavior is
passed the address of the collection and returns the indices of the children to play next and a count.

YOURBEHAVIOR (collection -- il i2 ... in n)

For example, a collection could have a random behavior, or decide which child to play next based on
user input, etc. The following is an example of a user written random behavior.

: RAND.BEHAV (coll -- i 1 , play 1 randomly)
MANY: [] (how many are there ?)
CHOOSE 1

Tutorial 1: A Simple Hierarchy

Required: MIDI synthesizer(s) set to respond to channels 1 & 2.

Let's suppose you want to play two melodies in parallel. We have seen in the chapter on players how
to play a single melody. Collections allow us to combine, or "collect", one or more morphs together.
We can then play those morphs one after the other, sequentially, or together, in parallel.

HMSL Reference Manual 8-3

Enter this tutorial into a file so you can experiment with it. Enter in a file:

ANEW TASK-COLTUT

\ Instantiate the morphs we will need.
OB.PLAYER PL1

OB.PLAYER PL2

OB.COLLECTION PCOL1

\

: PC.INIT (-- , setup players and collection)
PREFAB: PL1 (quick and dirty setup)
PREFAB: PL2
STUFF{ PL1 PL2 }STUFF: PCOLl
50 PUT.REPEAT: PCOLl1

4

: PC.TERM (-- , clean everything up)

CLEANUP: PCOL1
7

IF.FORGOTTEN PC.TERM

In PC.INIT, the PREFAB: methods dynamically instantiate a shape and a MIDI instrument for the
player. The shape is filled with a melody based on a random walk.

The STUFF{ command takes whatever was between the brackets and stuffs it into PCOL1. This is an
easy way to build a hierarchy. The next line tells COL1 to repeat 50 times when played.

The IF.FFORGOTTEN command will cause the collection to be cleaned up automatically if we forget
the code that defined it. This technique handy if you are compiling a file over and over again and don't
want to have to call PC.TERM by hand each time. Most HMSL programmers get in the habit of using
IF.FORGOTTEN often.

By default, a collection is parallel. You have defined a parallel collection above, even though it is not
specified.

To hear this collection, compile the file and enter directly:

PC.INIT
PRINT: PCOL1
PCOL1 HMSL.PLAY (Click on close box when done)

You should have heard two melodies playing in parallel. Now let's change the way the collection
behaves by telling it to play its two players sequentially instead of in parallel. Let's also set the repeat
counts of the players to 2 to make this clearer. Enter directly:

2 PUT.REPEAT: PLl1

2 PUT.REPEAT: PL2

ACT.SEQUENTIAL: PCOL1

PCOL1 HMSL.PLAY

Using the method ACT.SEQUENTIAL: will transform this collection into a sequential collection. To
set PCOL1 back to its original state, enter:

ACT.PARALLEL: PCOL1
Tutorial 2: Nested Collections

Collections can contain players, jobs, structures and other collections. This allows you to build very
large and complex hierarchies. Let's build a sequential collection that contains a player and a parallel
collection. We can use the parallel collection from the previous tutorial. In this example we will build
a melody by hand instead of using PREFAB: . Go back into the same file and remove the line that sets
the repeat count of PCOL1 to 50, then add the following at the end of the file:

8-4 Collections

OB.SHAPE SH3
OB.MIDI.INSTRUMENT 1INS3
OB.PLAYER PL3
OB.COLLECTION SCOL1

SC.INIT (-- , set up sequential collection)
32 3 NEW: SH3
STUFF{ \ build shape by hand
12 5 70
12 6 80
24 7 90
24 8 90
6 14 70
6 14 70

}STUFF: SH3
\ Tell PL3 to use SH3 and INS3
SH3 INS3 BUILD: PL3
\ Use MIDI preset 7 in instrument.
7 PUT.PRESET: 1INS3
STUFF{ PL3 PCOL1l }STUFF: SCOL1
20 PUT.REPEAT: SCOLl
ACT.SEQUENTIAL: SCOL1
PC.INIT (init parallel collection)
PRINT.HIERARCHY: SCOL1

SC.TERM (—--)
CLEANUP: SCOL1
PC.TERM (redundant in this case)

7

IF.FORGOTTEN SC.TERM \ for automatic cleanup if forgotten
Compile the file and enter directly:

SC.INIT
SCOL1 HMSL.PLAY
SC.TERM

You will hear the melody from PL3 alone, followed by PL1 and PL2 in parallel.
See the file HP:DEMO_COLLECTION for another example.

Collections: Technical Description, Behaviors, Methods

Technical Description

As described above, collections are executable morphs that contain other morphs, unlike shapes which
are “inactive bags of arbitrary data”. Most executable morphs may be put into a collection. Shapes
and actions may not. Collections can contain other collections, players, jobs, productions, or
structures.

Collections typically execute their component morphs either sequentially or in parallel. In sequential
mode, a collection will wait for the first morph to finish before executing the next one. It considers
itself finished when the last of its morphs sends its DONE: message back. In parallel mode, it will
execute all of its component morphs simultaneously. It considers itself finished when all of its morphs
have sent their DONE: message back. Either of these two modes can be selected using the
ACT.SEQUENTIAL: or ACT.PARALLEL: methods.

Note that any combination of these two may be obtained by putting one inside the other; that is, a
parallel collection can contain a sequential collection, or vice versa. By arranging parallel and

HMSL Reference Manual 8-5

sequential collections in a hierarchical manner, very complex patterns can be achieved. In fact, having
these two types of collections is necessary and sufficient for the specification of all possible "morph
trees" (with the obvious exception of a "recursive tree", when a given morph is called by itself at some
depth of the tree).

OB.COLLECTION is a subclass of OB.MORPH, so it inherits the methods and instance variables of
OB.MORPH.

Collections have an internal repeat count, which is used by the EXECUTE: method to determine how
many times to do the collection when it is EXECUTE:ed. There are two methods, GET.REPEAT:
and PUT.REPEAT: that can be used with this.

Putting a 0 in the repeat count of a morph "disables” that morph. If the collection is executing while
the repeat count is changed to 0, then it will stop when it finishes the current iteration. To stop a morph
immediately you can use the STOP: method. This is useful for turning off morphs from actions (as a
response to a stimuli), behaviors, productions, etc. If a morph is running through several repetitions
and you want it to stop at the end of the current repetition, use the FINISH: method.

Behaviors

In addition to being either sequential or parallel, a collection can use a custom function called a
behavior to determine the order of execution of its morphs. When a collection is executed, it calls its
behavior to determine the index of the next component morph, and EXECUTE:'s it. At some time
later, when those morphs are finished, they will send a DONE: message back to the collection . The
collection will then select the next set of morphs using the behavior as before. The collection will
continue until its behavior returns a count of 0, defined by convention as a terminator. The REPEAT-
COUNT will then be decremented, the collection will then be reset, and the above process repeated
until the REPEAT-COUNT runs out.

Behavior Definitions: There is a strict syntax for user-defined behaviors, which has the stack diagram:
MY.BEHAV (coll -- il i2 ... in N)

where il 12 ... in are indices of morphs in that collection, and N is the number of indices. If the count,
N, is zero, don't play any, we're done.

Every collection has a nodal weight, which may be used inside collections, or more specifically, by a
collection's behavior, in the determination of order for that collection.

An Example Behavior

BH.RANDOM (coll -- index 1 | 0)

BH.RANDOM is a simple behavior currently defined by HMSL. It returns either the index of one of
the component morphs plus a 1, or it returns 0 to stop. The 0 is as likely as getting any particular
morph. Here's its definition:
BH.RANDOM (coll -- index 1 | 0)

MANY: [] (get length of collection)

1+ CHOOSE DUP (select a random index+l or 0)

IF 1- 1 (-- index 1)

THEN
The preceding definition is a bit "slick," but it will be educational for the user to figure out how it
works.

As in other such HMSL functions, it can be useful to make COLL a local variable in a behavior
definition. For example, here’s an alternative definition to the behavior above, which also randomly
changes its own repeat count, and prints it’s name and new repeat count (note how many times we
have to refer to the local variable):
BH.RANDOM { coll -- index 1 | 0 }
COLL MANY: [] (get length of collection)
8-6 Collections

1+ CHOOSE DUP (select a random index+l or 0)
IF

1-1 (-
THEN
5 CHOOSE COLL PUT.REPEAT: []
COLL NAME: []
.” New repeat count is: “
COLL GET.REPEAT: [] . CR

index 1)

>

Collection Methods

Method Stack diagram
}STUFF: 0 morph-1 morph-2 morph-3 ... morph-n -- ,)
does NEW: and adds morphs to collection)

ACT.PARALLEL
ACT.SEQUENTIAL

-- , execute collection in parallel)

-- , execute collection sequentially)

(

(

(

(
ADD: (addr-morph -- , add to collection)
BEHAVE: (-- index , executes a collection's behavior)
EXECUTE: (time invoker -- , execute all component morphs)
EXTEND: (n -—- , enlarges collection to be able to)

(include n more morphs)
FINISH: (-- , stop after current repetition)
GET.REPEAT: (-- repeat-count)
GET.WEIGHT: (-- weight , get nodal weight)
INIT: (--)
NEW: (max-morphs -- , allocate room for morphs)
PRINT: (-- , print it)
PUT: (addr-morph index -- ,)

(put in appropriate place in collection)
PUT.BEHAVIOR: (CFA-behavior -- , sets behavior to use)
PUT.REPEAT: (repeat-count --)
PUT.WEIGHT: (weight --)
RESET: (--)
STOP: (-- , immediately stops the coll. & its children)
START: (-- , immediately starts the coll. & its children)

Table 8-1. Collection Methods

?EXECUTE: (time invoker -- time true | false)

If the morph is done immediately, it will return the virtual time it finished and a TRUE. If the morph
takes time to play, like a player or job, it will post itself and return FALSE. When it is finished it

will send a DONE: message back to the parent invoker.

ACT.SEQUENTIAL: (-- , behave sequentially)
ACT.PARALLEL: (-- , behave in parallel)
ADD: (addr-morph -- , add to collection)

Example: To add PLAYER-1 to a collection called COLL-S-1, say:

PLAYER-1 ADD: COLL-S-1
HMSL Reference Manual

BEHAVE: (-- index , executes a collection's behavior)

This is used internally by the collection to get the index of the next component morph which will be
executed.

This is also useful for testing to see if a behavior is working as expected.

EXECUTE: (time invoker -- , execute all component morphs)

This is primarily for internal use but can be used externally for testing. It is called by HMSL.PLAY
to start the execution of a hierarchy. Motion down the hierarchy is achieved when a morph uses
EXECUTE: on its component morphs. EXECUTE: can be very useful in seeing if an action or a
production is working correctly.

To execute a collection from within an action or a job, you should use START:

EXTEND: (n -- , enlarges collection to be able to include n more
morphs)
GET.REPEAT: (-- repeat-count)
See PUT.REPEAT: .
GET.REPEAT.DELAY: (-- delay , fetch delay)
GET.REPEAT.FUNCTION: (-- cfa , function to exec at repeat)

This method can be used to execute a user function when a collection or other morph, repeats. In
many cases Productions are no longer needed. The stack diagram of the word must be:

MYFUNC (morph -- , whatever)

See HP:DEMO REPFUNC for an example.

GET.REPETITION: (-- count , fetch which repetition)
GET.START.DELAY: (-- delay , fetch execution delay)
GET.START.FUNCTION: (-- cfa , function to exec at start)
GET.STOP.DELAY: (-- delay , fetch delay)
GET.STOP.FUNCTION: (-- cfa , function to exec at stop)
GET.WEIGHT: (-- weight , get nodal weight)

Returns weight of the collection (0 by default, or value set with PUT.WEIGHT:) on the stack.

NEW: (max-morphs -- , allocate room for morphs)
The number of dimensions need not be specified since it is always one.
Example:
OB.COLLECTION MY-PARALLEL
2 NEW: MY-PARALLEL
PRINT: (-- , print it)
Prints the values of the collection, including everything printed for morphs plus the nodal weight of

the collection and repeat count.

PUT: (morph index -- , put in appropriate place in collection

)

Example:
PLAYER-1 2 PUT: COLL-S-1

puts PLAYER-1 in the third position of a sequential collection. Assumes MANY is 3 or greater. See
SET.MANY: in the OB.ELMNTS documentation.

8-8 Collections

PUT.BEHAVIOR: (CFA-behavior | 0 -- , set behavior of
collection)

Store the CFA of an executable routine that implements the behavior of the collection. You can
choose a predefined behavior or define your own. Behaviors are passed the address of the collection
and return the indices of the next morphs to execute, and a count. Behaviors may also do anything
else the user wishes, such as alter the weights of various morphs, rearrange other morphs, change
shapes, read a stimulus, play a note, etc. They can be any executable code that has the right stack
diagram (the address of the collection is expected on the stack).

Behaviors should decide when to end by returning a 0 for the count of morphs.

Example:
'C BH.RANDOM PUT.BEHAVIOR: MY-COLLECTION
If you call PUT.BEHAVIOR: with a zero, the collection will go back to being either parallel or
sequential.
PUT.REPEAT: (repeat-count --)

Set the number of times to repeat a collection when executed.

PUT.REPEAT.DELAY: (delay -- , set delay between repeats)
PUT.REPEAT.FUNCTION: (cfa -- , function to exec at repeat)
PUT.START.DELAY: (delay -- , store execution delay)

Delay the start of a collection when it is executed. This can be used to stagger players in a parallel
collection for phasing effects by giving each player a different delay time. See HP:POLYPHASE for

an example.
PUT.START.FUNCTION: (cfa -- , function to exec at start)
PUT.STOP.DELAY: (-- delay , store delay between repeats)
PUT.STOP.FUNCTION: (cfa -- , function to exec at stop)
PUT.WEIGHT: (weight --)

The nodal weight is intended for use by some behaviors to decide which morph to execute next in a
collection. Note that GET.WEIGHT: and PUT.WEIGHT: may be usefully called by the programmer
from productions and actions as well.

SET.DONE: (-- , set done flag to terminate)

START: (-- , start executing a morph)

Performs a TIME@ 0 EXECUTE: . This is used when executing a morph that is at the top of a
hierarchy. HMSL must be running to hear anything.

STOP: (--)

STOP:'s execution of a collection and all its children.

}STUFF: (stuff{ morph-1 morph-2 ... morph-n -- , does NEW: then
adds morphs)

}STUFF: (pronounced "bracket stuff'") is an extremely basic and useful method (defined for all

morphs) for building a hierarchy. It is a substitute for NEW: and ADD: . For example, to build a

collection with 5 players in it:

OB.COLLECTION MY-COLLECTION

5 NEW: MY-COLLECTION

PLAYER-1 ADD: MY-COLLECTION

(repeat this line with new players ...)

HMSL Reference Manual 8-9

PLAYER-5 ADD: MY-COLLECTION

or the following syntax would work:

OB.COLLECTION MY-COLLECTION
STUFF{ PLAYER-1 PLAYER-2 PLAYER-3 PLAYER-4 PLAYER-5
}STUFF: MY-COLLECTION

This can be used for collections, players, structures, productions, actions, and jobs, but in the latter
three, note that 'C must be used before each "addition" to the morph (since you are adding CFA's).

Philosophy behind Collections

Collections are the parent class for most HMSL morphs, and thus productions, actions, jobs, players,
and even structures share nodal weights (in actions they are called priorities). Although the original
design of HMSL more or less intended collections to be a lower level morph than structures, the
current generality of the design makes this no longer a necessary assumption. However, since
structures are somewhat "intelligent" regarding their execution sequence (with the capability of having
a transition matrix associated with them, as well as a behavior), it may be useful to think of the
following data hierarchy, from lowest to highest: shapes, players, collections, structures.

A cognitive model of collections might be that they are any arbitrary hierarchical grouping of data
whose grouping is morphological. By hierarchical we mean "morphs can contain each other", and by
morphological, we mean ordered, or that "one morph can be said to come after another". Although
similar to the kind of statistical temporal gestalts suggested by, for example, Tenney in Meta + Hodos,
collections are by definition "ordered." In HMSL, that ordering may be user-defined (type it in), or
algorithmically computed (productions, jobs, actions or even collections themselves may alter the
morphology of a collection). One of the intentions in the HMSL-provided utilities is that the user be
able to experiment with deliberate reorderings of collections, by means of various compositional
algorithms, distance functions, stimuli, and the like.

8- 10 Collections

	Collections
	Most Important Information
	
	COLLECTIONS: Brief Introduction
	Collection Execution
	Collection Customization

	Tutorial 1: A Simple Hierarchy
	Tutorial 2: Nested Collections
	Collections: Technical Description, Behaviors, Methods
	Technical Description
	Behaviors
	An Example Behavior
	Collection Methods

	Philosophy behind Collections

